99精品久久这里只有精品,三上悠亚免费一区二区在线,91精品福利一区二区,爱a久久片,无国产精品白浆免费视,中文字幕欧美一区,爽妇网国产精品,国产一级做a爱免费观看,午夜一级在线,国产精品偷伦视频免费手机播放

    <del id="eyo20"><dfn id="eyo20"></dfn></del>
  • <small id="eyo20"><abbr id="eyo20"></abbr></small>
      <strike id="eyo20"><samp id="eyo20"></samp></strike>
    • 首頁(yè) > 文章中心 > 概率統(tǒng)計(jì)的方法

      概率統(tǒng)計(jì)的方法

      前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇概率統(tǒng)計(jì)的方法范文,相信會(huì)為您的寫作帶來(lái)幫助,發(fā)現(xiàn)更多的寫作思路和靈感。

      概率統(tǒng)計(jì)的方法

      概率統(tǒng)計(jì)的方法范文第1篇

      關(guān)鍵詞: 統(tǒng)計(jì)與概率 隨機(jī)思想 數(shù)學(xué)思想 聯(lián)系

      一、統(tǒng)計(jì)與概率中,隨機(jī)思想與其它思想方法之間的內(nèi)在聯(lián)系

      1.隨機(jī)思想與分類、歸納等確定性數(shù)學(xué)思想的聯(lián)系

      隨機(jī)包含兩方面的含義:一方面,單一事件的不確定性和不可預(yù)見性;另一方面,事件在經(jīng)歷大量重復(fù)試驗(yàn)中表現(xiàn)出規(guī)律性。雖然隨機(jī)思想是從解決現(xiàn)實(shí)世界中的不確定性問(wèn)題發(fā)展起來(lái)的,但隨機(jī)思想不過(guò)是高維的確定性問(wèn)題作低維處理的一種方式。比如:每次擲骰子的結(jié)果,應(yīng)該是其初始條件與過(guò)程中很多細(xì)微因素共同形成的,因這些因素?zé)o力掌握和控制它們,才將其中的很多因素統(tǒng)一地以一個(gè)隨機(jī)變量來(lái)表示。其實(shí),確定數(shù)學(xué)亦如此,在其數(shù)學(xué)模型的建立過(guò)程中也丟掉了不少“弱”因素。隨機(jī)數(shù)學(xué)與確定數(shù)學(xué)僅僅只是處理方法上的差別而已。

      從隨機(jī)思想的起源來(lái)看,又是分類、歸納等確定性數(shù)學(xué)思想的進(jìn)一步發(fā)展和具體運(yùn)用。事實(shí)上,作為定量研究隨機(jī)思想的概率和統(tǒng)計(jì)方法最先起源于歸納法,概率的發(fā)展經(jīng)歷了從歸納法到概率歸納法再到概率論的發(fā)展過(guò)程,而統(tǒng)計(jì)思想則是由局部到整體、由特殊到一般,是歸納法在數(shù)學(xué)上的具體應(yīng)用。

      2.隨機(jī)思想與統(tǒng)計(jì)、概率思想的聯(lián)系

      概率是從數(shù)量的角度來(lái)研究大量的隨機(jī)現(xiàn)象,從中尋找這些隨機(jī)現(xiàn)象所服從的統(tǒng)計(jì)規(guī)律,并用嚴(yán)格的數(shù)學(xué)方法研究各種隨機(jī)現(xiàn)象的統(tǒng)計(jì)規(guī)律之間的相互聯(lián)系。統(tǒng)計(jì)思想則是從一組樣本分析、判斷這個(gè)系統(tǒng)的狀態(tài),或判定某一論斷能以多大的概率來(lái)保證其正確性,或計(jì)算出發(fā)生錯(cuò)誤判斷的概率。盡管隨機(jī)思想與統(tǒng)計(jì)、概率思想研究的都是隨機(jī)現(xiàn)象,但隨機(jī)思想更基本,因?yàn)闊o(wú)論是對(duì)概率還是統(tǒng)計(jì)的研究,都必須建立在事件的發(fā)生具有隨機(jī)性這一前提之上,沒(méi)有隨機(jī)思想,就沒(méi)有統(tǒng)計(jì)與概率。而概率與統(tǒng)計(jì)思想則更深刻、更精確,是對(duì)隨機(jī)思想的量化發(fā)展。隨機(jī)思想既具有偶然性一面,又具有必然性一面,然而必然性并不會(huì)自動(dòng)顯現(xiàn)出來(lái),它總是隱藏在偶然現(xiàn)象背后,那么如何來(lái)發(fā)現(xiàn)和把握偶然現(xiàn)象背后的必然性呢?這就需要統(tǒng)計(jì)和概率的方法來(lái)準(zhǔn)確把握――顯示其統(tǒng)計(jì)規(guī)律和概率規(guī)律。比如:拋一枚硬幣,究竟是正面朝上還是反面朝上?通常被認(rèn)為是完全隨機(jī)的,但這是根據(jù)經(jīng)驗(yàn)或直覺得出來(lái)的,因此它只是一種經(jīng)驗(yàn)性的隨機(jī)思想,而如果通過(guò)統(tǒng)計(jì)的方法,計(jì)算出某一次試驗(yàn)中正面朝上和反面朝上的頻數(shù),再進(jìn)一步通過(guò)概率方法計(jì)算出正面朝上和反面朝上的概率,那么就可以揭示出這一試驗(yàn)的內(nèi)在規(guī)律了――正面朝上和反面朝上的概率幾乎相等。

      3.隨機(jī)思想與等可能性假設(shè)的聯(lián)系。

      隨機(jī)思想與等可能性假設(shè)之間存在著密切的聯(lián)系,這種聯(lián)系主要表現(xiàn)為隨機(jī)思想與等可能性假設(shè)之間既對(duì)立又統(tǒng)一。一方面,這兩者之間存在著差別,隨機(jī)思想是人們對(duì)現(xiàn)實(shí)世界中大量隨機(jī)現(xiàn)象的一種本質(zhì)認(rèn)識(shí),而等可能假設(shè)則是人們?yōu)榱吮阌谘芯繂?wèn)題所做的一種理想化假設(shè),前者是一種規(guī)律性認(rèn)識(shí),后者是一種假設(shè);另一方面,這兩者之間又存在統(tǒng)一性,隨機(jī)思想是研究隨機(jī)現(xiàn)象的立足點(diǎn)和出發(fā)點(diǎn),而等可能假設(shè)則是研究隨機(jī)現(xiàn)象的一種具體方法,它是隨機(jī)思想在研究隨機(jī)現(xiàn)象過(guò)程中的具體運(yùn)用。沒(méi)有等可能假設(shè),隨機(jī)思想就只能是空想。隨機(jī)總會(huì)表現(xiàn)為一定程度的等可能性,如果不存在絲毫的等可能性,那么這樣的隨機(jī)又怎么能稱得上隨機(jī)呢?同樣,沒(méi)有隨機(jī)思想,等可能假設(shè)也就成了無(wú)源之水、無(wú)本之木。比如:拋硬幣的試驗(yàn),盡管我們都知道并不存在真正意義上的等可能事件,但我們卻可以假定每次試驗(yàn)都是等可能的,否則我們就無(wú)法進(jìn)行研究。

      二、概率與統(tǒng)計(jì)與其它數(shù)學(xué)思想之間的內(nèi)在聯(lián)系

      1.統(tǒng)計(jì)概率與分類思想的聯(lián)系

      分類思想方法對(duì)統(tǒng)計(jì)與概率的研究有著基礎(chǔ)的重要性,深入領(lǐng)會(huì)分類思想方法是靈活運(yùn)用其它各種思想方法的前提。統(tǒng)計(jì)與概率中所涉及的許多問(wèn)題,最后都要通過(guò)分類思想方法轉(zhuǎn)化為確定性問(wèn)題。比如:古典概率問(wèn)題的計(jì)算需要應(yīng)用排列與組合,而排列與組合又離不開分類的方法。特別是對(duì)于一些比較復(fù)雜的概率問(wèn)題,由于試驗(yàn)的復(fù)雜性和條件的特殊性,試驗(yàn)結(jié)果往往不是等可能出現(xiàn)的,一般很難運(yùn)用統(tǒng)一的方法進(jìn)行處理,這時(shí)常常要按照一定的標(biāo)準(zhǔn),采用一定的方法,將試驗(yàn)結(jié)果分成若干個(gè)“類”來(lái)進(jìn)行計(jì)算;再如統(tǒng)計(jì)中的分層抽樣計(jì)算也需要運(yùn)用分類的思想方法。

      2.概率思想與歸納思想的聯(lián)系

      歸納與概率之間存在著密切的聯(lián)系。歸納法中的概率歸納推理是從歸納法向概率法發(fā)展的標(biāo)志。概率歸納推理是根據(jù)一類事件中部分事件出現(xiàn)的概率,推出該類所有事件出現(xiàn)的概率的不完全歸納推理,是由部分到全體的推理,其特點(diǎn)是對(duì)可能性的大小作數(shù)量方面的估計(jì),它的結(jié)論超出了前提所斷定的范圍,因而是或然的。從某種程度上來(lái)說(shuō),歸納是一種特殊的概率,概率方法是歸納法的自然推廣,概率是歸納法發(fā)展到一定程度的必然產(chǎn)物。概率方法本身是對(duì)大量隨機(jī)事件和隨機(jī)現(xiàn)象所進(jìn)行的一種歸納,是對(duì)隨機(jī)事件發(fā)生的結(jié)果的歸納,它并不關(guān)心事件發(fā)生的具體過(guò)程;而歸納法不僅關(guān)注事件發(fā)生的結(jié)果,它還關(guān)注事件發(fā)生的具體過(guò)程,它承認(rèn)事件發(fā)生過(guò)程中的規(guī)律性,并以此為基礎(chǔ)來(lái)研究事件發(fā)生過(guò)程中的規(guī)律性。歸納法主要適用于少變量因果關(guān)系的簡(jiǎn)單事件所決定的問(wèn)題;而概率方法則主要適用于多變量因果關(guān)系的復(fù)雜事件所決定的問(wèn)題。從歸納法到概率方法反映了人們的認(rèn)識(shí)從確定性走向不確定性的一種歷史必然。

      概率統(tǒng)計(jì)的方法范文第2篇

      數(shù)學(xué)建模是通過(guò)運(yùn)用數(shù)學(xué)符號(hào)、公式、程序、圖表等刻畫現(xiàn)實(shí)問(wèn)題的抽象的本質(zhì)屬性和內(nèi)在規(guī)律,再通過(guò)數(shù)學(xué)計(jì)算求解來(lái)解釋和解決實(shí)際問(wèn)題。數(shù)學(xué)模型應(yīng)用廣泛,小到生活中購(gòu)物、路線設(shè)計(jì);大到投資理財(cái)、尖端的科學(xué)研究都離不開數(shù)學(xué)模型分析。近些年來(lái),幾乎所有高校都開設(shè)數(shù)學(xué)建模校級(jí)公選課,并且鼓勵(lì)大學(xué)生參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽和全國(guó)大學(xué)生統(tǒng)計(jì)建模大賽,希望以此提高大學(xué)生數(shù)學(xué)素養(yǎng)和分析問(wèn)題能力。

      概率統(tǒng)計(jì)課程作為一門應(yīng)用性最強(qiáng)的數(shù)學(xué)課程之一,數(shù)學(xué)課程模型化教學(xué)方式也越來(lái)越受到重視的同時(shí),討論概率統(tǒng)計(jì)課程的模型化教學(xué)方法旨在解決大學(xué)生理解隨機(jī)數(shù)學(xué)的難點(diǎn);有利于提高大學(xué)生學(xué)習(xí)抽象理論知識(shí)的能力,因此具有重要的理論和現(xiàn)實(shí)意義。雖然模型化教學(xué)在數(shù)學(xué)類課程教學(xué)方法改革中被廣泛的應(yīng)用,但是也有許多問(wèn)題存在,比如教學(xué)中使用的模型的選擇,模型的計(jì)算等問(wèn)題都是模型化教學(xué)過(guò)程中難點(diǎn),本文就概率統(tǒng)計(jì)課程的一些特點(diǎn), 總結(jié)模型化教學(xué)中的應(yīng)該把握的幾個(gè)要點(diǎn),以期提高概率統(tǒng)計(jì)課程的模型化課堂教學(xué)效果。

      1 教學(xué)內(nèi)容的模型化

      概率統(tǒng)計(jì)課程的模型化教學(xué)的設(shè)計(jì)首先要把握的一個(gè)難點(diǎn)是概率統(tǒng)計(jì)模型的選擇。教師在教學(xué)內(nèi)容的模型設(shè)計(jì)的過(guò)程中要把握好難度和對(duì)理論內(nèi)容的貼切性。概率統(tǒng)計(jì)課程中的一些概念、性質(zhì)、理論具有很強(qiáng)的抽象性,理解和應(yīng)用對(duì)于初步接觸隨機(jī)數(shù)學(xué)的大學(xué)生來(lái)說(shuō)確有難度,在模型化教學(xué)方法中可以通過(guò)精選例題、構(gòu)造適合的概率統(tǒng)計(jì)模型,使得選擇的模型有效的融入了概率統(tǒng)計(jì)的理論知識(shí)同時(shí)形成實(shí)際問(wèn)題有效的解決方案, 讓學(xué)生能對(duì)概率統(tǒng)計(jì)課程的內(nèi)容有全面而又深刻的理解。在生活和書本里雖然有許多例子,但是很多時(shí)候有些例子由于模型背景冗長(zhǎng)而耽誤教學(xué)時(shí)間,或者不是很貼切需要學(xué)習(xí)的理論造成學(xué)生理解上的困難,這樣的例子都不適合作為概率統(tǒng)計(jì)課程模型化教學(xué)的例題。

      2 模型的實(shí)用性和時(shí)代性

      教學(xué)中模型的可選擇一些反映社會(huì)經(jīng)濟(jì)生活中的背景與熱點(diǎn)問(wèn)題,使的概率統(tǒng)計(jì)模型化教學(xué)課堂能跟上時(shí)代步伐,也讓學(xué)生感覺到學(xué)習(xí)隨機(jī)數(shù)學(xué)理論能解決實(shí)際問(wèn)題,同時(shí)也讓授課內(nèi)容實(shí)用化程度得到提高,增強(qiáng)課堂教學(xué)的趣味性。

      3 模型實(shí)驗(yàn)性教學(xué)

      概率統(tǒng)計(jì)課程教學(xué)除了要求學(xué)生掌握書本的概率統(tǒng)計(jì)理論,對(duì)于理論應(yīng)用的模型計(jì)算隨著信息技術(shù)日益發(fā)達(dá)而要求越來(lái)越高, 現(xiàn)在新版的很多概率統(tǒng)計(jì)教材中對(duì)大量的模型計(jì)算均由軟件實(shí)現(xiàn),例如MATLAB,SAS、R、SPSS 等數(shù)學(xué)與統(tǒng)計(jì)軟件, 當(dāng)然除了課堂教學(xué)外,在當(dāng)前這個(gè)大數(shù)據(jù)時(shí)代實(shí)際工作中大量數(shù)據(jù)的處理也離不開各種數(shù)學(xué)和統(tǒng)計(jì)軟件的使用。因此在概率統(tǒng)計(jì)課程的模型化教學(xué)中可以根據(jù)內(nèi)容的特點(diǎn)利用數(shù)學(xué)或者統(tǒng)計(jì)軟件進(jìn)行建模,開展實(shí)驗(yàn)教學(xué)?,F(xiàn)在統(tǒng)計(jì)實(shí)驗(yàn)室建設(shè)和使用已經(jīng)非常普遍,可以將課堂建立的概率統(tǒng)計(jì)模型代入實(shí)驗(yàn)室結(jié)合統(tǒng)計(jì)理論進(jìn)行實(shí)驗(yàn), 增強(qiáng)學(xué)生對(duì)知識(shí)的理解,同時(shí)為今后的應(yīng)用打下基礎(chǔ)。例如,在介紹大數(shù)定律在蒙特卡羅(Monte Carlo) 隨機(jī)模擬法中的應(yīng)用。

      概率統(tǒng)計(jì)的方法范文第3篇

      大家好!我是來(lái)自初中數(shù)學(xué)知識(shí)板塊中的“統(tǒng)計(jì)與概率”解題策略與方法,“統(tǒng)計(jì)與概率”在中考數(shù)學(xué)的考查中約占15%的分值,可不能忽視我哦!今天,我們就來(lái)聊一聊“統(tǒng)計(jì)與概率”這部分解題的策略與方法.

      先一起看統(tǒng)計(jì)部分的內(nèi)容,想要攻破y計(jì)的題,需要會(huì)計(jì)算一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、加權(quán)平均數(shù),會(huì)計(jì)算簡(jiǎn)單數(shù)據(jù)的方差,還要能分析統(tǒng)計(jì)表中的數(shù)據(jù),我們通過(guò)例題來(lái)分析.

      例1 已知一組數(shù)據(jù)0,1,2,3,x的平均數(shù)是2,求這組數(shù)據(jù)的極差、方差.

      【剖析】本題考查的是數(shù)據(jù)的平均數(shù)、數(shù)據(jù)的極差與方差.

      [平均數(shù):[x]=[x1+x2+…+xnn];

      極差:最大值與最小值的差;

      方差:s2=[1n][(x1-[x])+(x2-[x])2+…+(xn-[x])2].]

      因此,本題應(yīng)先利用平均數(shù)求出x,得到一組完整的數(shù)據(jù)即0,1,2,3,4,想要求極差,找出數(shù)據(jù)中的最大值是4,最小值是0,所以極差=4-0=4,方差s2=[15]×[(0-2)2+(1-2)2+(2-2)2+(3-2)2+(4-2)2]=[15]×(4+1+0+1+4)=2.

      例2 (2016?鹽城)甲、乙兩位同學(xué)參加數(shù)學(xué)綜合素質(zhì)測(cè)試,各項(xiàng)成績(jī)?nèi)缦?(單位:分)

      (1)分別計(jì)算甲、乙成績(jī)的中位數(shù);

      (2)如果數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績(jī)按3∶3∶2∶2計(jì)算,那么甲、乙的數(shù)學(xué)綜合素質(zhì)成績(jī)分別為多少分?

      【剖析】本題考查的是計(jì)算甲、乙成績(jī)的中位數(shù)以及加權(quán)平均數(shù).從本題中的“中位數(shù)”“3∶3∶2∶2”“甲、乙的數(shù)學(xué)綜合素質(zhì)成績(jī)分別為多少分”這三個(gè)關(guān)鍵字段回顧中位數(shù)和加權(quán)平均數(shù)的概念.

      [中位數(shù):將一組數(shù)據(jù)按大小順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),那么處于中間位置的數(shù)是這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個(gè)數(shù)是偶數(shù),那么中間位置的兩個(gè)數(shù)的平均數(shù)是這組數(shù)據(jù)的中位數(shù).

      加權(quán)平均數(shù):衡量各個(gè)數(shù)據(jù)的“重要程度”的數(shù)值叫做權(quán).]

      (1)中求一組數(shù)據(jù)的中位數(shù),由上表可將學(xué)生甲的成績(jī)排序?yàn)椋?9,90,90,93,一共有四個(gè)數(shù),因此取[90+902]=90作為學(xué)生甲成績(jī)的中位數(shù).

      (2)中數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的成績(jī)按3∶3∶2∶2計(jì)算,說(shuō)明數(shù)與代數(shù)、空間與圖形、統(tǒng)計(jì)與概率、綜合與實(shí)踐的“重要程度”不一樣,它們?cè)诳偝煽?jī)中各占[33+3+2+2],[33+3+2+2],[23+3+2+2],[23+3+2+2].因此甲的成績(jī)=90×[33+3+2+2]+93×[33+3+2+2]+89×[23+3+2+2]+90×[23+3+2+2]=90.7(分).

      【答案】(1)90分,93分;(2)90.7分,91.8分.

      【總結(jié)】例1與例2計(jì)算了算術(shù)平均數(shù)、極差、方差、中位數(shù)、加權(quán)平均數(shù),除此之外還有眾數(shù)(一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)),其實(shí)我們只要理清概念,熟記知識(shí)點(diǎn),問(wèn)題就能迎刃而解.

      例3 (2016?揚(yáng)州)從今年起,我市生物和地理會(huì)考實(shí)施改革,考試結(jié)果以等級(jí)形式呈現(xiàn),分A、B、C、D四個(gè)等級(jí).某校八年級(jí)為了迎接會(huì)考,進(jìn)行了一次模擬考試,隨機(jī)抽取部分學(xué)生的生物成績(jī)進(jìn)行統(tǒng)計(jì),繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

      (1)這次抽樣調(diào)查共抽取了 名學(xué)生的生物成績(jī),扇形統(tǒng)計(jì)圖中,D等級(jí)所對(duì)應(yīng)的扇形圓心角度數(shù)為 °;

      (2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;

      (3)如果該校八年級(jí)共有600名學(xué)生,請(qǐng)估計(jì)這次模擬考試有多少名學(xué)生的生物成績(jī)等級(jí)為D.

      【剖析】本題考查了從統(tǒng)計(jì)圖中分析數(shù)據(jù)的能力,要求計(jì)算樣本容量、扇形圓心角的度數(shù)、用樣本估計(jì)總體.(1)根據(jù)A等級(jí)的人數(shù)為15人及A等級(jí)所占的比例為30%,即可求出總?cè)藬?shù),進(jìn)而可得出扇形統(tǒng)計(jì)圖中D等級(jí)所在的扇形的圓心角的度數(shù).(2)根據(jù)D等級(jí)的人數(shù)=總數(shù)-A等級(jí)的人數(shù)-B等級(jí)的人數(shù)-C等級(jí)的人數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可.(3)先求出D等級(jí)人數(shù)所占的百分比,然后即可估計(jì)出總體中等級(jí)為D的人數(shù).

      【答案】(1)50,36;(2)5,補(bǔ)全統(tǒng)計(jì)圖略;(3)60名.

      【總結(jié)】我們要具備從統(tǒng)計(jì)圖中分析處理數(shù)據(jù)的能力,要能讀懂統(tǒng)計(jì)圖中蘊(yùn)涵的數(shù)據(jù)信息,提取出信息來(lái)解決問(wèn)題.在解決統(tǒng)計(jì)問(wèn)題的過(guò)程中,體會(huì)用樣本估計(jì)總體的模型思想,理解數(shù)形結(jié)合的數(shù)學(xué)思想,提升邏輯推理的數(shù)學(xué)素養(yǎng).

      看完統(tǒng)計(jì)部分的內(nèi)容,我們繼續(xù)來(lái)看概率部分的內(nèi)容,我們要能從數(shù)據(jù)中提取信息并進(jìn)行簡(jiǎn)單的推斷;能通過(guò)列表、畫樹狀圖等方法,列出簡(jiǎn)單隨機(jī)事件的所有可能的結(jié)果,以及指定事件發(fā)生的所有可能結(jié)果,了解事情發(fā)生的概率,會(huì)求簡(jiǎn)單隨機(jī)事件及其發(fā)生的概率.下面通過(guò)例題來(lái)分析.

      例4 將分別標(biāo)有數(shù)字1、2、3的三張卡片洗勻后,背面朝上放在桌上.

      (1)隨機(jī)地抽取一張,求抽到奇數(shù)的概率;

      (2)隨機(jī)地抽取一張作為十位上的數(shù)字(不放回),再抽取一張作為個(gè)位上的數(shù)字,恰好是“32”的概率為多少?

      【剖析】本題考查了通過(guò)列舉法列出簡(jiǎn)單隨機(jī)事件所有可能的結(jié)果,了解事件的概率.(1)隨機(jī)地抽取一張,可以理解為實(shí)驗(yàn)一次,要求抽出奇數(shù)的概率,可用P(A)=[mn](n表示所有等可能出現(xiàn)的結(jié)果數(shù),m表示事件A發(fā)生可能出現(xiàn)的結(jié)果數(shù).)直接解決.(2)隨機(jī)地抽取一張作為十位上的數(shù)字,再抽取一張作為個(gè)位上的數(shù)字,可以理解為實(shí)驗(yàn)兩次,可通過(guò)列表、畫樹狀圖列出所有等可能的結(jié)果以及事件A發(fā)生的所有可能的結(jié)果,求出恰好是“32”的概率.一定要注意的是題目中的關(guān)鍵詞“不放回”.

      【答案】(1)[23];(2)[16].

      【總結(jié)】畫樹狀圖或者列表分析是求概率的常用方法,列舉的結(jié)果看起來(lái)一目了然,清晰明了.利用列表、畫樹狀圖可以幫助我們不重復(fù)、不遺漏地列出所有等可能的結(jié)果,既直觀又條理分明.

      例5 (2016?徐州)某乳品公司最新推出一款果味酸奶,共有紅棗、木瓜兩種口味.若送奶員連續(xù)三天,每天從中任選一瓶某種口味的酸奶贈(zèng)送給某住戶品嘗,則該住戶收到的三瓶酸奶中,至少有兩瓶為紅棗口味的概率是多少?(請(qǐng)用“畫樹狀圖”的方法給出分析過(guò)程,并求出結(jié)果.)

      【剖析】本題考查了通過(guò)畫樹狀圖列出簡(jiǎn)單隨機(jī)事件所有可能的結(jié)果,了解事件的概率.題目中“若送奶員連續(xù)三天”可理解為實(shí)驗(yàn)三次,因此可以借助樹狀圖列出所有等可能的結(jié)果.

      可能出現(xiàn)的結(jié)果有8種,并且它們出現(xiàn)的可能性相等.至少有兩瓶為紅棗口味(記為事件A)的結(jié)果有4種,所以P(A)=[12].

      【總結(jié)】當(dāng)一次試驗(yàn)要涉及兩個(gè)因素(兩組量,或者1組量操作兩次),并且可能出現(xiàn)的結(jié)果數(shù)目較多時(shí),可以采用列表法;當(dāng)一次試驗(yàn)中涉及3個(gè)因素或更多因素時(shí),通常采用畫樹狀圖不重不漏地列出所有等可能的結(jié)果.

      例6 一套書共有上、中、下三冊(cè),將它們?nèi)我鈹[放到書架的同一層上,這三本書從左到右或從右到左,恰好成上、中、下順序的概率是多少?

      【剖析】想要把共有上、中、下三冊(cè)的一套書任意擺放到書架的同一層上,可以借助枚舉法列出所有等可能的結(jié)果.

      【答案】將一套書上、中、下三冊(cè)任意擺放到書架同一層上所有可能出現(xiàn)的結(jié)果有:(上,中,下),(上,下,中),(中,上,下),(中,下,上),(下,上,中),(下,中,上),共有6種,它們出現(xiàn)的可能性相同.所有的結(jié)果中,滿足“從左到右或從右到左,恰好成上、中、下順序”(記為事件A)的結(jié)果只有2種,所以P(A)=[13].

      【總結(jié)】對(duì)于本題可以直接用枚舉法列出所有可能的結(jié)果,求出概率.列表、畫樹狀圖的目的都是為了列出所有等可能的結(jié)果,有時(shí)我們也可以通過(guò)枚舉法直接列出所有的可能的結(jié)果.

      好了,看了這么多典型的例題,相信同學(xué)們對(duì)“統(tǒng)計(jì)與概率”這個(gè)部分的題目,可以更加從容自信了吧!找到解決“統(tǒng)計(jì)與概率”典型題的策略與方法了嗎?

      此致

      敬禮

      “統(tǒng)計(jì)與概率”解題策略與方法

      概率統(tǒng)計(jì)的方法范文第4篇

      關(guān)鍵詞 統(tǒng)計(jì)與概率;數(shù)學(xué)教學(xué);數(shù)學(xué)思想

      在數(shù)學(xué)學(xué)科中,概率統(tǒng)計(jì)是一門十分活躍的分支,它與實(shí)際生活息息相關(guān),其理論和方法在工農(nóng)業(yè)和軍事上得到了廣泛的應(yīng)用,具有豐富的內(nèi)容,因此,其課題的研究也具有生動(dòng)性;同時(shí),它與其他學(xué)科有著密不可分的聯(lián)系,對(duì)其他學(xué)科的發(fā)展起著重要作用。但是,對(duì)于概率統(tǒng)計(jì)的學(xué)習(xí)和掌握,并不是一件容易的事情,很多學(xué)習(xí)者在概率統(tǒng)計(jì)的學(xué)習(xí)中會(huì)感覺到概念十分抽象,無(wú)法形成確定具體的印象;理論推理和計(jì)算十分復(fù)雜,不利于記憶和掌握;同時(shí),在面對(duì)一個(gè)具體的問(wèn)題時(shí),無(wú)法將其正確的抽象為概率統(tǒng)計(jì)的模型。如何在短時(shí)間內(nèi)讓學(xué)生入門,學(xué)好該課程,同時(shí),將該課程的知識(shí)應(yīng)用于實(shí)際生活,為科學(xué)技術(shù)的發(fā)展服務(wù),成為教育工作者需要解決的問(wèn)題。

      從大的方向上來(lái)看,概率統(tǒng)計(jì)具有兩個(gè)基本特征,隨機(jī)性和規(guī)律性:它通過(guò)對(duì)隨機(jī)事件的研究,找出蘊(yùn)含在隨機(jī)性背后的規(guī)律性,以此對(duì)未發(fā)生的事件作出合理的預(yù)測(cè),指導(dǎo)實(shí)踐,它與數(shù)學(xué)中其他知識(shí)有很大的不同,需要學(xué)習(xí)者掌握一種不確定性的思想,把握事物的本質(zhì)。在中學(xué)的教學(xué)過(guò)程中發(fā)現(xiàn),學(xué)生對(duì)概率統(tǒng)計(jì)知識(shí)的認(rèn)知能力還很缺乏,對(duì)偶然性和必然性的認(rèn)識(shí)還較膚淺,概率統(tǒng)計(jì)學(xué)也是教學(xué)中的薄弱環(huán)節(jié)。

      一、統(tǒng)計(jì)與概率的基本特點(diǎn)

      1.情境性

      對(duì)數(shù)量關(guān)系進(jìn)行研究是數(shù)學(xué)的主要任務(wù),因此,數(shù)學(xué)的主要研究對(duì)象自然是數(shù)與量,數(shù)量是經(jīng)過(guò)多次抽象的結(jié)果,它與實(shí)際情景有很大差別,僅僅是一種人工符號(hào);但是概率統(tǒng)計(jì)所研究的對(duì)象,除了數(shù)據(jù)本身之外,還需要對(duì)具體的情景進(jìn)行分析,得出的結(jié)論也是為了對(duì)實(shí)際的背景進(jìn)行解釋。例如:明天下雨的概率有多大?買彩票時(shí)中獎(jiǎng)的概率有多大?如何合理統(tǒng)計(jì)某國(guó)家人口?等等。所以,在概率統(tǒng)計(jì)的學(xué)習(xí)中,更應(yīng)該結(jié)合實(shí)際的經(jīng)驗(yàn),將問(wèn)題與實(shí)際的情景聯(lián)系起來(lái),而不是像學(xué)習(xí)數(shù)學(xué)中的其他知識(shí)那樣,僅僅強(qiáng)調(diào)算法和公式的運(yùn)用,缺乏背景的學(xué)習(xí)只會(huì)讓學(xué)生感覺到迷惑和不解。

      2.不確定性

      統(tǒng)計(jì)的最大特點(diǎn)是不確定性,正是由于這種不確定性,才需要對(duì)統(tǒng)計(jì)進(jìn)行分析和研究,統(tǒng)計(jì)的主要內(nèi)容就是對(duì)不確定的現(xiàn)象進(jìn)行合理統(tǒng)計(jì)和預(yù)測(cè),我們生活的環(huán)境千變?nèi)f化,隨處都能找到不確定現(xiàn)象,不確定性的外在表現(xiàn)形式是變異性。在以往的教學(xué)中,往往忽略了三個(gè)方面的訓(xùn)練:忽略了學(xué)生對(duì)不確定性這一概念的理解,沒(méi)有很好的引導(dǎo)學(xué)生對(duì)概率中的不確定性進(jìn)行研究;對(duì)學(xué)生無(wú)法完成的事物缺乏認(rèn)識(shí),僅僅關(guān)注他們能夠完成的任務(wù);缺乏對(duì)學(xué)生思維的跟蹤研究。

      3.直覺性

      通過(guò)部分?jǐn)?shù)據(jù)來(lái)對(duì)整體數(shù)據(jù)進(jìn)行推測(cè)是概率統(tǒng)計(jì)的主要方法,不同于確定性思維方式,這一過(guò)程存在隨機(jī)性,也存在犯錯(cuò)誤的可能,統(tǒng)計(jì)思維與確定性思維一同構(gòu)成了人們不可或缺的思想武器。概率統(tǒng)計(jì)對(duì)自然界中出現(xiàn)的大量隨機(jī)現(xiàn)象進(jìn)行數(shù)學(xué)描述,幫助人們作出合理的決定。在具體的教學(xué)過(guò)程中,應(yīng)該重視學(xué)生對(duì)統(tǒng)計(jì)作用和思維的認(rèn)識(shí),對(duì)隨機(jī)性和規(guī)律性的直覺體會(huì)。例如:通過(guò)樣本來(lái)估計(jì)總體時(shí),學(xué)生應(yīng)該認(rèn)識(shí)到樣本能夠反映出總體的特征,但是也存在偏差,如果采用合理的抽樣方法,就能夠得到較為準(zhǔn)確的總體信息,指導(dǎo)人們的實(shí)踐活動(dòng)。

      二、統(tǒng)計(jì)與概率中的數(shù)學(xué)思想

      新課標(biāo)的出臺(tái),改變了過(guò)去過(guò)分注重古典概率計(jì)算以及過(guò)分強(qiáng)調(diào)理論嚴(yán)密性的現(xiàn)狀,逐漸開始重視培養(yǎng)學(xué)生的數(shù)學(xué)思想,使學(xué)生通過(guò)對(duì)隨機(jī)現(xiàn)象的了解來(lái)形成正確的世界觀和方法論。在概率統(tǒng)計(jì)中,隨機(jī)思想和統(tǒng)計(jì)思想是最為重要的兩點(diǎn)。

      1.隨機(jī)思想

      要將隨機(jī)思想貫穿于概率與統(tǒng)計(jì)教學(xué)的整個(gè)過(guò)程,以此來(lái)構(gòu)建數(shù)學(xué)思想的網(wǎng)絡(luò)。在初學(xué)概率統(tǒng)計(jì)時(shí),學(xué)生常常會(huì)感到吃力和難以理解,這是因?yàn)楦怕示哂泻軓?qiáng)的靈活性,不同于以往嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維,這一學(xué)科要求學(xué)生深刻體會(huì)統(tǒng)計(jì)思想和含義,在推導(dǎo)的過(guò)程中理解隨機(jī)本質(zhì),新課標(biāo)中加深了對(duì)隨機(jī)事件的描述,概率統(tǒng)計(jì)的比重也較過(guò)去有所增加。在現(xiàn)實(shí)世界中,可以對(duì)某一現(xiàn)象的結(jié)果進(jìn)行合理預(yù)測(cè),例如:硬幣從高空落地的時(shí)間可以通過(guò)物理公式計(jì)算出來(lái),但是落地時(shí),哪一面朝上卻是隨機(jī)的,經(jīng)過(guò)大量的重復(fù)性實(shí)驗(yàn),可以得到正面朝上和反面朝上的概率各為1/2。隨機(jī)性在自然界是普遍存在的,我們無(wú)法在事情發(fā)生之前得到確切的結(jié)果,只能得到結(jié)果出現(xiàn)的概率,這都是隨機(jī)性的體現(xiàn),那么,對(duì)這些隨機(jī)性事件進(jìn)行研究的意義何在呢?例如:天氣預(yù)報(bào)播出明天有雨的概率為90%,那么人們會(huì)選擇出門帶雨傘,因?yàn)橄掠甑母怕时炔幌掠甑母怕蚀?。與確定性學(xué)科一樣,概率已經(jīng)成為人們認(rèn)識(shí)和改造自然不可或缺的手段,隨機(jī)思想的培養(yǎng)具有重要的現(xiàn)實(shí)意義。

      2.統(tǒng)計(jì)思想

      統(tǒng)計(jì)思想包括三個(gè)方面:采用的統(tǒng)計(jì)方法;收集和處理統(tǒng)計(jì)數(shù)據(jù);推斷和總結(jié)處理結(jié)果。統(tǒng)計(jì)方法的好壞主要以出錯(cuò)機(jī)率的大小來(lái)衡量,出現(xiàn)錯(cuò)誤的機(jī)率越小,采用的方法越有效,但任何一種統(tǒng)計(jì)方法都不可能保證絕對(duì)不出現(xiàn)錯(cuò)誤,收集好數(shù)據(jù)后,進(jìn)行合理分析和推理。例如:對(duì)民意進(jìn)行測(cè)驗(yàn),對(duì)國(guó)民人口進(jìn)行統(tǒng)計(jì),對(duì)金融數(shù)據(jù)的統(tǒng)計(jì)等等,都涉及到大量數(shù)據(jù)的統(tǒng)計(jì)處理。統(tǒng)計(jì)學(xué)將計(jì)算活動(dòng)、算術(shù)作圖等與具體的所需解決的問(wèn)題緊密聯(lián)系在一起,當(dāng)從數(shù)量的角度表現(xiàn)出了有價(jià)值的結(jié)果,就可以直接指導(dǎo)實(shí)踐,比如:工農(nóng)業(yè)某一工藝的改進(jìn)在實(shí)驗(yàn)測(cè)試過(guò)程中初現(xiàn)優(yōu)勢(shì),就可以立即進(jìn)行推廣。在一具體的系統(tǒng)中,可以通過(guò)統(tǒng)計(jì)的方法發(fā)現(xiàn)事物之間的內(nèi)在聯(lián)系,由此得到一些有價(jià)值的結(jié)論,比如:吸煙與肺癌的關(guān)系,通過(guò)大量的統(tǒng)計(jì)實(shí)例,雖然無(wú)法得到發(fā)病的機(jī)理何在,但能夠推斷出吸煙是導(dǎo)致肺癌的一大因素。

      概率統(tǒng)計(jì)的方法范文第5篇

      關(guān)鍵詞: 概率統(tǒng)計(jì) 啟發(fā)式教學(xué) 概率統(tǒng)計(jì)思想

      概率統(tǒng)計(jì)思想體系和其他數(shù)學(xué)基礎(chǔ)課完全不一樣,是一門獨(dú)立的學(xué)科,需要換一種思考方法。一開始學(xué)很難入門,所以學(xué)生對(duì)概率統(tǒng)計(jì)產(chǎn)生了抵觸心理,他們經(jīng)常逃課,即使來(lái)上課也不認(rèn)真聽課,下課也不復(fù)習(xí)和預(yù)習(xí)。分析原因,一是概率統(tǒng)計(jì)枯燥無(wú)味,對(duì)其用處一無(wú)所知,學(xué)習(xí)目標(biāo)不明確;二是基礎(chǔ)差根本就學(xué)不會(huì),跟不上老師的授課進(jìn)度,他們也很茫然,不知道怎么辦。

      概率統(tǒng)計(jì)在以后的專業(yè)課學(xué)習(xí)中是很重要的,尤其是對(duì)統(tǒng)計(jì)和金融專業(yè)的學(xué)生。為了提升學(xué)生的概率統(tǒng)計(jì)水平,提高學(xué)生的數(shù)學(xué)素養(yǎng)和邏輯思維,培養(yǎng)學(xué)生主動(dòng)發(fā)現(xiàn)問(wèn)題、分析問(wèn)題和解決問(wèn)題的能力,我根據(jù)多年的教學(xué)經(jīng)驗(yàn)總結(jié)如下。

      1.確定授課學(xué)生的專業(yè),分析他們對(duì)概率統(tǒng)計(jì)的深度和側(cè)重點(diǎn),通過(guò)高考成績(jī)分析他們的數(shù)學(xué)底子是否深厚,以此為根據(jù)制訂教學(xué)計(jì)劃。比如金融專業(yè)的學(xué)生,我們不僅要求學(xué)生掌握原理的應(yīng)用,而且要掌握定理的證明;如果是經(jīng)濟(jì)類、法律類的學(xué)生,只要求掌握概率統(tǒng)計(jì)的基本思想,能夠用概率統(tǒng)計(jì)的原理解決問(wèn)題。

      2.制訂完教學(xué)計(jì)劃,針對(duì)學(xué)生的特點(diǎn)采用啟發(fā)式教學(xué)進(jìn)行授課。

      (1)每一節(jié)課的知識(shí)點(diǎn)引入很關(guān)鍵,根據(jù)生活中的例子引起學(xué)生的興趣,這樣學(xué)生會(huì)主動(dòng)學(xué)習(xí)。這個(gè)引入要精煉,不做過(guò)多解釋,點(diǎn)到為止,抓住學(xué)生的興奮點(diǎn)即可。比如講古典概率時(shí),我們可以拿100個(gè)人里面肯定會(huì)有兩個(gè)人的生日一樣作為引例。再如講條件概率時(shí),國(guó)家的經(jīng)濟(jì)制定目標(biāo)和醫(yī)生看病可以作為引例,這些都是條件概率的應(yīng)用。引例有好多,可以選擇時(shí)下學(xué)生最感興趣的話題作為引入。

      (2)知識(shí)點(diǎn)的講解時(shí)啟發(fā)式的教學(xué)方法可以靈活應(yīng)用,如提問(wèn)啟發(fā)式,這個(gè)方法老師們上課都在用,目的是調(diào)動(dòng)學(xué)生的主動(dòng)性,積極思考。提問(wèn)啟發(fā)式主要是找到事物的矛盾,形成問(wèn)題的語(yǔ)境是關(guān)鍵,比如講條件概率時(shí),可以提問(wèn)條件概率和無(wú)條件概率的區(qū)別,怎樣分析條件概率中的條件,以及給出一個(gè)概率值分析是條件概率還是無(wú)條件概率,經(jīng)過(guò)這樣深入分析,學(xué)生就將條件概率的知識(shí)點(diǎn)牢記心中了。

      對(duì)比啟發(fā)式,概率統(tǒng)計(jì)中的隨機(jī)變量是兩類,一類是離散型隨機(jī)變量,另一類是連續(xù)型隨機(jī)變量。離散型隨機(jī)變量的知識(shí)點(diǎn)比較好理解,例如分布率、期望和方差等。但是連續(xù)型隨機(jī)變量不能分解,而且設(shè)計(jì)到高數(shù)中一些積分求導(dǎo)的抽象的理論,所以我們采用對(duì)比啟發(fā)式,積分是變相的求和,離散型的公式轉(zhuǎn)到連續(xù)時(shí),和號(hào)變成積分號(hào),概率值變成概率元素,這樣就直接轉(zhuǎn)變成連續(xù)型的公式了。這樣離散和連續(xù)的對(duì)比,一是可以繞開高數(shù)中一些抽象的理論,二是知識(shí)點(diǎn)的理解比較順,思路能夠融會(huì)貫通,學(xué)生很容易接受。

      比喻啟發(fā)式,概率統(tǒng)計(jì)中抽象的定義和理論比較多,而且這對(duì)于大二的學(xué)生是全新的知識(shí)點(diǎn),有的定義講完了還不知是什么,這種情況經(jīng)??吹?。例如講完備事件組時(shí),定義講完了,學(xué)生對(duì)這個(gè)概念沒(méi)有感覺,定義介紹完了也就完了,以后用到它很難理解。我們可以將樣本空間比喻成一塊蛋糕,完備事件組就是被分完的蛋糕組合。這樣的比喻很形象,更容易理解。

      案例啟發(fā)式,我們?cè)谡n堂教學(xué)中可以引入生活中有趣的案例,激發(fā)學(xué)生的興趣,提高學(xué)生的學(xué)習(xí)主動(dòng)性。比如講泊松分布時(shí),它很抽象,我們可以介紹生活中服從泊松分布的例子幫助學(xué)生理解,像單位時(shí)間內(nèi)飛機(jī)場(chǎng)落的飛機(jī)的架數(shù)、單位時(shí)間內(nèi)通過(guò)某路口的汽車兩數(shù)和單位時(shí)間內(nèi)銀行柜臺(tái)口接待的顧客人數(shù)等,知道了它們的分布可以幫助我們解決很多問(wèn)題。

      圖像啟發(fā)式,圖像能幫助我們理解函數(shù)的性質(zhì)。在概率統(tǒng)計(jì)的教學(xué)中,圖像啟發(fā)式同樣起到了很大的作用。比如講正態(tài)分布的密度函數(shù)時(shí),它的圖像幫助我們理解了正態(tài)分布的性質(zhì),而且在講置信區(qū)間時(shí),幫助學(xué)生理解了置信度在一定的條件下為什么關(guān)于原點(diǎn)對(duì)稱的區(qū)間精確度最高。

      實(shí)踐啟發(fā)式,概率統(tǒng)計(jì)后面主要講的是基礎(chǔ)的統(tǒng)計(jì),課程講完了,雖然學(xué)生能夠按貓畫虎將題作對(duì),但是里面的統(tǒng)計(jì)思想可能還沒(méi)有掌握,甚至在實(shí)際應(yīng)用中不知所措。常言道:實(shí)踐出真知,我們可以給他們些數(shù)據(jù)或者學(xué)生自己找,應(yīng)用我們學(xué)的統(tǒng)計(jì)知識(shí)對(duì)實(shí)際生活中的問(wèn)題進(jìn)行判斷。比如我們可以讓學(xué)生驗(yàn)證兩個(gè)班的數(shù)學(xué)水平的高低、某一科的成績(jī)是否符合正態(tài)分布和食堂的打飯口的數(shù)量是否合適等。通過(guò)實(shí)際應(yīng)用,學(xué)生不僅感受到了概率統(tǒng)計(jì)的重大作用,而且充分理解了概率統(tǒng)計(jì)的思想,為以后的學(xué)習(xí)打下了堅(jiān)實(shí)的基礎(chǔ)。

      啟發(fā)式的教學(xué)方法還有好多,但教學(xué)是一門藝術(shù),每一節(jié)課它不是一成不變的,不同的學(xué)生采取不同教學(xué)方式。在準(zhǔn)備教案時(shí)不要只用一種啟發(fā)式教學(xué),要將各種方法融會(huì)貫通。講好一節(jié)課,不僅備課時(shí)要準(zhǔn)備充分,而且上課時(shí)根據(jù)學(xué)生的理解情況,隨機(jī)應(yīng)變,臨場(chǎng)發(fā)揮。教學(xué)是一門藝術(shù),隨時(shí)補(bǔ)充材料,不斷更新。

      總之,概率是一門全新的學(xué)科,應(yīng)用性很強(qiáng)。在授課時(shí),抽象理論的推導(dǎo)不再作為重點(diǎn),重點(diǎn)是知識(shí)的融會(huì)貫通。教師的任務(wù)是采取各種啟發(fā)式教學(xué)方法幫助學(xué)生理解概率統(tǒng)計(jì)的思想,既知其然,更知其所以然。多看書,理解其中的思想,可以通過(guò)做題幫助我們理解知識(shí)點(diǎn),但是沒(méi)有必要陷進(jìn)各種各樣的解題方法中不出來(lái)。做題是一種手段,重點(diǎn)是概率統(tǒng)計(jì)的思想的理解,解決問(wèn)題和分析問(wèn)題的能力的提高。如果這個(gè)重點(diǎn)做好了,概率統(tǒng)計(jì)這門課的學(xué)習(xí)任務(wù)就可圓滿完成。不管是以后的專業(yè)課學(xué)習(xí),還是畢業(yè)工作都會(huì)受益匪淺?!笆谌艘贼~,不如授人以漁”,我們要“授人以漁”,為讓學(xué)生成為社會(huì)精英繼續(xù)努力。

      參考文獻(xiàn):

      [1]胡曙光.淺談啟發(fā)式數(shù)學(xué)教學(xué)[J].福建財(cái)會(huì)干部學(xué)院學(xué)報(bào),2007(2):39-40.

      [2]周淑嬌.啟發(fā)式數(shù)學(xué)教學(xué)的重要原則[J].武警學(xué)院學(xué)報(bào),1997(1):80-81.

      [3]許毅,姜福全.高等數(shù)學(xué)課啟發(fā)式教學(xué)淺析[J].哈爾濱金融學(xué)院學(xué)報(bào),2011(3)-83.

      免费a级毛片18禁网站免费| 无码a级毛片免费视频内谢| 日本精品熟妇一区二区三区| 国产日产在线视频一区| 少妇内射兰兰久久| 亚洲永久无码动态图| 日本亚洲一级中文字幕| 不卡免费在线亚洲av| 7777色鬼xxxx欧美色妇| 欧美精品偷自拍另类在线观看| 久久久久久无码AV成人影院| 亚洲成人精品在线一区二区| 亚洲精品www久久久久久| 国产精品亚洲五月天高清| 国产麻豆精品久久一二三| 中国老熟女露脸老女人| 超碰97资源站| 国产哟交泬泬视频在线播放 | 美女偷拍一区二区三区| 人妻夜夜爽天天爽三区丁香花| 久久综合狠狠综合久久| 女同中的p是什么意思| 免费人成在线观看播放视频| 国产成人精品一区二区三区| 亚洲男人第一av网站| av网站影片在线观看| 亚洲精品午夜久久久九九| 久久综合国产乱子伦精品免费| 久久久久久久妓女精品免费影院 | 就爱射视频在线视频在线| 国产高清av首播原创麻豆| 国产精品大屁股1区二区三区| 日本高清成人一区二区三区 | 日韩av一区二区毛片| 中文字幕亚洲精品专区| 国产h视频在线观看| 四虎成人在线| 国产精品亚洲在线播放| 午夜免费啪视频| 欧洲中文字幕| 一区二区三区在线乱码 |