前言:想要寫出一篇令人眼前一亮的文章嗎?我們特意為您整理了5篇光電子器件范文,相信會為您的寫作帶來幫助,發(fā)現(xiàn)更多的寫作思路和靈感。
論文摘要:納米光電子技術是一門新興的技術,近年來越來越受到世界各國的重視,而隨著該技術產(chǎn)生的納米光電子器件更是成為了人們關注的焦點。主要介紹了納米光電子器件的發(fā)展現(xiàn)狀。
1納米導線激光器
2001年,美國加利福尼亞大學伯克利分校的研究人員在只及人的頭發(fā)絲千分之一的納米光導線上制造出世界最小的激光器-納米激光器。這種激光器不僅能發(fā)射紫外激光,經(jīng)過調整后還能發(fā)射從藍色到深紫外的激光。研究人員使用一種稱為取向附生的標準技術,用純氧化鋅晶體制造了這種激光器。他們先是"培養(yǎng)"納米導線,即在金層上形成直徑為20nm~150nm,長度為10000nm的純氧化鋅導線。然后,當研究人員在溫室下用另一種激光將納米導線中的純氧化鋅晶體激活時,純氧化鋅晶體會發(fā)射波長只有17nm的激光。這種納米激光器最終有可能被用于鑒別化學物質,提高計算機磁盤和光子計算機的信息存儲量。
2紫外納米激光器
繼微型激光器、微碟激光器、微環(huán)激光器、量子雪崩激光器問世后,美國加利福尼亞伯克利大學的化學家楊佩東及其同事制成了室溫納米激光器。這種氧化鋅納米激光器在光激勵下能發(fā)射線寬小于0.3nm、波長為385nm的激光,被認為是世界上最小的激光器,也是采用納米技術制造的首批實際器件之一。在開發(fā)的初始階段,研究人員就預言這種ZnO納米激光器容易制作、亮度高、體積小,性能等同甚至優(yōu)于GaN藍光激光器。由于能制作高密度納米線陣列,所以,ZnO納米激光器可以進入許多今天的GaAs器件不可能涉及的應用領域。為了生長這種激光器,ZnO納米線要用催化外延晶體生長的氣相輸運法合成。首先,在藍寶石襯底上涂敷一層1nm~3.5nm厚的金膜,然后把它放到一個氧化鋁舟上,將材料和襯底在氨氣流中加熱到880℃~905℃,產(chǎn)生Zn蒸汽,再將Zn蒸汽輸運到襯底上,在2min~10min的生長過程內(nèi)生成截面積為六邊形的2μm~10μm的納米線。研究人員發(fā)現(xiàn),ZnO納米線形成天然的激光腔,其直徑為20nm~150nm,其大部分(95%)直徑在70nm~100nm。為了研究納米線的受激發(fā)射,研究人員用Nd:YAG激光器(266nm波長,3ns脈寬)的四次諧波輸出在溫室下對樣品進行光泵浦。在發(fā)射光譜演變期間,光隨泵浦功率的增大而激射,當激射超過ZnO納米線的閾值(約為40kW/cm)時,發(fā)射光譜中會出現(xiàn)最高點,這些最高點的線寬小于0.3nm,比閾值以下自發(fā)射頂點的線寬小1/50以上。這些窄的線寬及發(fā)射強度的迅速提高使研究人員得出結論:受激發(fā)射的確發(fā)生在這些納米線中。因此,這種納米線陣列可以作為天然的諧振腔,進而成為理想的微型激光光源。研究人員相信,這種短波長納米激光器可應用在光計算、信息存儲和納米分析儀等領域中。
3量子阱激光器
2010年前后,蝕刻在半導體片上的線路寬度將達到100nm以下,在電路中移動的將只有少數(shù)幾個電子,一個電子的增加和減少都會給電路的運行造成很大影響。為了解決這一問題,量子阱激光器就誕生了。在量子力學中,把能夠對電子的運動產(chǎn)生約束并使其量子化的勢場稱之成為量子阱。而利用這種量子約束在半導體激光器的有源層中形成量子能級,使能級之間的電子躍遷支配激光器的受激輻射,這就是量子阱激光器。目前,量子阱激光器有兩種類型:量子線激光器和量子點激光器。
3.1量子線激光器
近日,科學家研制出功率比傳統(tǒng)激光器大1000倍的量子線激光器,從而向創(chuàng)造速度更快的計算機和通信設備邁進了一大步。這種激光器可以提高音頻、視頻、因特網(wǎng)及其他采用光纖網(wǎng)絡的通信方式的速度,它是由來自耶魯大學、位于新澤西洲的朗訊科技公司貝爾實驗室及德國德累斯頓馬克斯·普朗克物理研究所的科學家們共同研制的。這些較高功率的激光器會減少對昂貴的中繼器的要求,因為這些中繼器在通信線路中每隔80km(50mile)安裝一個,再次產(chǎn)生激光脈沖,脈沖在光纖中傳播時強度會減弱(中繼器)。
3.2量子點激光器
由直徑小于20nm的一堆物質構成或者相當于60個硅原子排成一串的長度的量子點,可以控制非常小的電子群的運動而不與量子效應沖突??茖W家們希望用量子點代替量子線獲得更大的收獲,但是,研究人員已制成的量子點激光器卻不盡人意。原因是多方面的,包括制造一些大小幾乎完全相同的電子群有困難。大多數(shù)量子裝置要在極低的溫度條件下工作,甚至微小的熱量也會使電子變得難以控制,并且陷入量子效應的困境。但是,通過改變材料使量子點能夠更牢地約束電子,日本電子技術實驗室的松本和斯坦福大學的詹姆斯和哈里斯等少數(shù)幾位工程師最近已制成可在室溫下工作的單電子晶體管。但很多問題仍有待解決,開關速度不高,偶然的電能容易使單個電子脫離預定的路線。因此,大多數(shù)科學家正在努力研制全新的方法,而不是仿照目前的計算機設計量子裝置。
4微腔激光器
微腔激光器是當代半導體研究領域的熱點之一,它采用了現(xiàn)代超精細加工技術和超薄材料加工技術,具有高集成度、低噪聲的特點,其功耗低的特點尤為顯著,100萬個激光器同時工作,功耗只有5W。該激光器主要的類型就是微碟激光器,即一種形如碟型的微腔激光器,最早由貝爾實驗室開發(fā)成功。其內(nèi)部為采用先進的蝕刻工藝蝕刻出的直徑只有幾微米、厚度只有100nm的極薄的微型園碟,園碟的周圍是空氣,下面靠一個微小的底座支撐。由于半導體和空氣的折射率相差很大,微碟內(nèi)產(chǎn)生的光在此結構內(nèi)發(fā)射,直到所產(chǎn)生的光波積累足夠多的能量后沿著它的邊緣折射,這種激光器的工作效率很高、能量閾值很低,工作時只需大約100μA的電流。
長春光學精密機械學院高功率半導體激光國家重點實驗室和中國科學院北京半導體研究所從經(jīng)典量子電動力學理論出發(fā)研究了微碟激光器的工作原理,采用光刻、反應離子刻蝕和選擇化學腐蝕等微細加工技術制備出直徑為9.5μm、低溫光抽運InGaAs/InGaAsP多量子阱碟狀微腔激光器。它在光通訊、光互聯(lián)和光信息處理等方面有著很好的應用前景,可用作信息高速公路中最理想的光源。
微腔光子技術,如微腔探測器、微腔諧振器、微腔光晶體管、微腔放大器及其集成技術研究的突破,可使超大規(guī)模集成光子回路成為現(xiàn)實。因此,包括美國在內(nèi)的一些發(fā)達國家都在微腔激光器的研究方面投人大量的人力和物力。長春光機與物理所的科技人員打破常規(guī),用光刻方法實現(xiàn)了碟型微腔激光器件的圖形轉移,用濕法及干法刻蝕技術制作出碟型微腔結構,在國內(nèi)首次研制出直徑分別為8μm、4.5μm和2μm的光泵浦InGaAs/InGaAsP微碟激光器。其中,2μm直徑的微碟激光器在77K溫度下的激射闊值功率為5μW,是目前國際上報道中的最好水平。此外,他們還在國內(nèi)首次研制出激射波長為1.55μm,激射閾值電流為2.3mA,在77K下激射直徑為10μm的電泵浦InGaAs/InGaAsP微碟激光器以及國際上首個帶有引出電極結構的電泵浦微柱激光器。值得一提的是,這種微碟激光器具有高集成度、低閾值、低功耗、低噪聲、極高的響應、可動態(tài)模式工作等優(yōu)點,在光通信、光互連、光信息處理等方面的應用前景廣闊,可用于大規(guī)模光子器件集成光路,并可與光纖通信網(wǎng)絡和大規(guī)模、超大規(guī)模集成電路匹配,組成光電子信息集成網(wǎng)絡,是當代信息高速公路技術中最理想的光源;同時,可以和其他光電子元件實現(xiàn)單元集成,用于邏輯運算、光網(wǎng)絡中的光互連等。
電子科學與技術(以下簡稱“電科”)專業(yè)是以培養(yǎng)具備微電子、光電子、集成電路等領域寬厚理論基礎、實驗能力和專業(yè)知識,能在電子科學與技術及相關領域從事各種電子材料、元器件、集成電路、電子系統(tǒng)、光電子系統(tǒng)的設計、制造、科技開發(fā),以及科學研究、教學和生產(chǎn)管理工作的復合型專業(yè)人才為目標的工程專業(yè)。作為電科專業(yè)教育中重要內(nèi)容的光電子技術,不僅是當代信息技術兩大支柱之一,而且隨著現(xiàn)代科學技術的發(fā)展持續(xù)煥發(fā)著生命活力。而讓光電子技術保持如此強勁發(fā)展勢頭的主要原因之一,正是光電子材料與器件的廣泛應用,例如激光器與新型光電探測器的應用的人你還。另外,諸如納米光電材料與器件、光子晶體及相關器件、超材料及相關器件與表面等離子體激元及器件等新型光電子材料與器件的研究與應用,是目前國際上光學與光電子學研究領域的前沿熱門方向。由此可見,學習光電子材料與器件的相關知識,不僅對電科學生知識體系的構建與就業(yè)方向的確定具有積極的影響,也為那些將來希望從事新型光電子材料與器件科研工作的學生,提供了堅實的理論基礎與知識儲備。然而,根據(jù)筆者的調研,雖然國內(nèi)許多重點大學的電科專業(yè)都開設了光電子技術課程,但很少有大學專門開設光電子材料與器件這門課程。而由于光電子技術的內(nèi)容多、涉及知識面廣,教學課時又往往有限(一般為32或48個學時),因此在光電子技術的實際教學過程中,講授教師往往重視光電子技術基本概念與理論知識的教學,而輕視光電子材料與器件的教學。該文從光電子材料與器件的研究內(nèi)容、應用及發(fā)展等方面說明其在電科專業(yè)教育中的重要性,并結合自身光電子材料與器件課程的教學經(jīng)驗,研討電科專業(yè)中光電子材料與器件的教學方法。
1 光電子材料與器件簡介
光電子材料是指能產(chǎn)生、轉換、傳輸、處理、存儲光電子信號的材料。光電子器件是指能實現(xiàn)光輻射能量與信號之間轉換功能或光電信號傳輸、處理和存儲等功能的器件。自1960年美國科學家梅曼發(fā)明世界上第一臺紅寶石激光器以來,光電子材料與器件如雨后春筍般發(fā)展迅速。在短短的50多年里,光電子材料與器件經(jīng)歷了從紅寶石激光器的發(fā)明,到半導體激光器、CCD器件及低損耗光纖的相繼問世;從各種光無源器件、光調制器件、探測與顯示器件的小規(guī)模應用到系統(tǒng)級集成制造實用化階段;從大功率量子阱陣列激光器的出現(xiàn)再到光纖激光器、光纖放大器和光纖傳感器的誕生。光電子材料與器件從未停止過發(fā)展的腳步,并正在不斷深刻影響著人類社會的方方面面。在實際需求的引導下,各種新型光電子材料與器件層出不窮,性能也不斷提高。尤其是近年來,隨著微米及納米級加工技術的成熟,新型的微納光電子材料與器件的研究異?;钴S。納米光電材料、光子晶體、超材料、表面等離子體器件等領域的研究成果豐碩,為未來光電子器件的微型化、集成化發(fā)展奠定了堅實的基礎。
綜上所述,光電子材料與器件在當代信息產(chǎn)業(yè)與科學技術中具有極其重要的地位,因此,光電子材料與器件這門課程不僅應當單獨作為一門課程獨立教學,而且應該作為重視工程教育的電科專業(yè)的核心課程。
2 光電子材料與器件課程教學研究
2.1 光電子材料與器件課程的教學形式、課時安排與教材選擇
光電子材料與器件課程不僅包含豐富的理論知識,例如光電子材料的物理特性以及光電子器件的工作原理等,而且與實際應用結合精密,因此,本課程宜采取理論教學與實驗教學相結合的教學形式。
在課時安排方面,作為電科專業(yè)的一門核心專業(yè)課程,光電子材料與器件課程的總課時應不低于32學時(2學分),理論課學時不低于26學時,實驗課不低于6學時。
另外,在教材選擇方面,由于光電子材料與器件是光電子技術中的一部分內(nèi)容,而目前國內(nèi)關于光電子技術方向的參考書籍很多,其中亦不乏一些光電子技術課程的經(jīng)典教材,例如西安電子科技大學安毓英主編的《光電子技術》[1],西安交通大學朱京平主編的《光電子技術基礎》[2]等。雖然這些光電子技術參考書中或多或少都會介紹與光電子技術相關的材料與器件,但是,目前專門介紹光電子材料與器件方向的教科書卻是少之又少,市面上僅有國防工業(yè)出版社2012年出版的侯宏錄主編的《光電子材料與器件》[3]一書。加之,該書中所涉及的理論知識較深,基礎淺薄的本科生很難駕馭。由此可見,對于光電子材料與器件這門新興課程而言,設立統(tǒng)一的教材并不合適。因此,筆者建議該課程的講授教師根據(jù)理論教學與實驗教學的內(nèi)容,自行編寫該課程的講義與課件。
2.2 光電子材料與器件課程的理論教學
按照電科專業(yè)的專業(yè)定位以及培養(yǎng)目標,光電子材料與器件課程的理論教學也應該突出“工程”內(nèi)容。傳統(tǒng)的光電子技術教學中所重視的原理、定律與規(guī)律等內(nèi)容,在光電子材料與器件教學中要弱化;而傳統(tǒng)光電子技術教學中往往被弱化乃至忽視的光電子材料與光電子器件的相關知識,要在光電子材料與器件課程教學中占主體地位。如此才能保證在有限理論課時的前提下,讓學生對光電子材料與器件有一個全面的認識。
在教學內(nèi)容的設置方面,由于光電子材料與器件主要應用于光電子技術之中,因此,為了便于學生的理解與知識體系的構建,筆者建議光電子材料與器件課程理論教學的章節(jié)設置按照光電子技術的章節(jié)設置進行。以筆者講授光電子材料與器件理論課程(共26學時)為例,該理論課程共被分成了緒論(2學時)、激光原理與典型激光器(5學時)、太陽能電池(4學時)、光通信器件與材料(5學時)、光探測器件(5學時)、光電顯示器件(3學時)與光存儲器件(2學時)等七個章節(jié),這七章內(nèi)容基本囊括了光電子技術中光產(chǎn)生、光轉化、光傳輸、光探測、光顯示以及光存儲等各個重要環(huán)節(jié)中最為典型的器件以及所用到的材料。另外,在每章內(nèi)容的設置上,也盡可能突出“工程”內(nèi)容,弱化“理論”知識。下面,筆者將詳細介紹筆者在光電子材料與器件教學中各章的教學內(nèi)容。
第一章緒論主要包括光電子材料與器件課程簡介以及光電子技術的基本知識簡介。在光電子材料與器件課程簡介中,向學生介紹課程設置的目的和意義、課程的主要內(nèi)容、教學與考試方式與參考資料等。通過這部分內(nèi)容的介紹,讓學生對本課程的意義、內(nèi)容、側重點有一定的認識。在光電子技術基礎知識簡介中,重點向學生介紹光電子材料與器件與光電子技術的關系,并通過對光電子技術的概念、特征、發(fā)展等方面的介紹,讓學生對光電子技術以及光電子材料與器件有一個整體的認識。
第二章激光原理與激光器重點介紹幾種典型激光器的材料、結構與工作特性,其主要內(nèi)容包括三個部分:激光原理簡述、典型激光器與激光器的應用。在激光原理簡述部分,由于多數(shù)電科專業(yè)在學習光電子材料與器件課程之前已經(jīng)修過激光原理等類似課程,所以該部分內(nèi)容為簡略介紹的內(nèi)容,主要幫助學生回顧激光的特征、歷史與光輻射理論等知識點。而第二部分內(nèi)容典型激光器是本章內(nèi)容的重中之重,在該部分內(nèi)容中,將依次向學生介紹固體、氣體、液體與半導體這四大類激光器中的典型激光器的結構、特征與工作特性等知識。由于發(fā)光二極管與半導體激光器結構與工作原理上的相似,在介紹完半導體激光器后,可以順理成章地介紹發(fā)光二極管的結構與特征。另外,本章最后還簡單介紹了激光器的幾種常見應用。
太陽能電池雖然是光電探測器中光伏效應的一種特殊應用,但是由于它在現(xiàn)如今光電子技術產(chǎn)業(yè)以及光電子器件中的重要地位以及良好的發(fā)展趨勢,該部分內(nèi)容被獨立成一章。在第三章太陽能電池中,主要分兩小節(jié)給學生介紹,第一小節(jié)介紹當今能源與環(huán)境問題以及太陽能的開發(fā)和利用,讓學生了解當今能源資源的現(xiàn)狀以及新能源研究與應用的迫切需求,然后介紹太陽能利用的歷史以及發(fā)展趨勢;第二小節(jié)正式介紹太陽能電池的工作原理、結構以及特性等知識。
第四章光通信器件與材料主要介紹的是光通信系統(tǒng)中所用到的有源與無源光器件。本章內(nèi)容共分為兩小節(jié):第一小節(jié)介紹光纖通信的基礎知識,包括光纖通信的定義,光纖的結構、導光原理、發(fā)展歷史,以及光纖通信系統(tǒng)的組成與特點。第二小節(jié)正式介紹光纖通信系統(tǒng)中所用到的各類光電子器件以及構成這些器件的核心材料。在光纖通信中,最重要的器件當屬光纖,所以,本節(jié)開始就著重介紹光纖的相關知識,包括它的結構、原理、分類、特征參數(shù)與傳輸特性。然后,又將光纖通信系統(tǒng)中的其它光電子器件分為有源與無源器件兩類,并分別介紹了這兩類光器件中的代表器件:摻鉺光纖放大器與波分復用與解復用器。最后,在本章結尾還介紹了光纖通信系統(tǒng)中其它幾種常用光器件,例如光耦合器、光衰減器、光環(huán)行器等。
第五章光探測器首先介紹了光電探測器的物理效應、性能參數(shù)、噪聲;其次,按照光電探測器物理效應的不同一一介紹了幾種典型的外光電效應探測器(光電管與光電倍增管)與內(nèi)光電效應探測器(光電導、光電池與光電二極管)。教學的重心仍然放在對探測器結構、工作原理以及特性等方面。
第六章光顯示器件重點介紹四種光顯示器:陰極射線管、液晶顯示器、等離子顯示器與電致發(fā)光顯示器。
第七章光存儲器件主要介紹了現(xiàn)如今最常用的一種光存儲系統(tǒng)―― 光盤系統(tǒng)以及其中最總要的器件光盤。
2.3 光電子材料與器件課程的實驗教學
光電子材料與器件實驗課程的教學要與理論教學緊密相連,并重點介紹理論課上講解過的光電子材料與器件,實驗課程的學時應不低于6學時,開設的時間最好在理論教學完成之后,以保證學生在實驗前已對實驗器件與實驗原理有一定的了解。在實驗項目的設定方面,既要保證與理論課程內(nèi)容的相輔相成,又要盡量避免與其它課程實驗項目的重復,造成資源的浪費。例如,許多大學的電科專業(yè)都已經(jīng)將激光原理一課作為該專業(yè)的核心專業(yè)課程,并配備了相應的激光器實驗。在這種情況下,如果在光電子材料與器件實驗教學中再次引入激光器的實驗內(nèi)容,不僅消耗了寶貴的實驗時間,實驗效果也會大大降低。
下面跟大家簡單介紹筆者在光電子材料與器件實驗教學(6學時)中的實驗安排。
(1)實驗內(nèi)容:共包含六個實驗項目,它們分別是:光控開關實驗、光照度計實驗、紅外遙控實驗、PSD位移測試實驗、太陽能充電實驗與光纖位移測量系統(tǒng)實驗(每個實驗1學時)。各實驗中都應用到了一個或幾個核心光電子器件,這些光電子器件基本涵蓋了學生在理論課程中所學到的最為重要的幾類器件,例如光控開關實驗應用到了光電探測器中的光敏電阻作為核心元器件;而紅外遙控實驗中用到了發(fā)光二極管光源與紅外探測器等光電子器件。
(2)實驗要求:以往的光電子技術實驗往往重視現(xiàn)象的觀察與定性分析,但經(jīng)筆者調研,這種實驗方法很難最大限度激發(fā)學生的求知欲與動手能力,因此,在對原有的實驗指導書進行改良后,筆者自行編寫了實驗的指導書,并在每個實驗項目中加入了一些測量與定量分析的實驗內(nèi)容。例如太陽能充電實驗,原來的實驗指導書只是觀察太陽能充電的效果,但是,在新改良的實驗指導書中,要求同學測量不同光源照射下太陽能電池的輸出電壓與輸出電流,并要求學生分析比較其差別。通過這種方式,充分調動學生的實驗積極性,在具體的實驗教學中也取得了很好的效果。
(3)實驗方式:分組實驗,共同撰寫實驗報告。這樣,不僅提高實驗效率,還能夠鍛煉學生的團隊協(xié)作意識。
(4)考核方式:根據(jù)每位學生實驗完成的情況與實驗報告撰寫的情況綜合評分。
光纖通信技術的發(fā)展速度遠遠超過當初人們的預料,光纖已經(jīng)成為通信網(wǎng)的重要傳輸媒介,現(xiàn)在世界上大約有60%的通信業(yè)務經(jīng)光纖傳輸,到20世紀末將達到85%,但從目前光纖通信的整體水平來看,仍處于初級階段,光纖通信的巨大潛力還沒有完全開發(fā)出來。目前,各種新技術層出不窮,密集波分復用技術(DWDM,在同一根光纖內(nèi)傳輸多路不同波長的光信號,以提高單根光纖的傳輸能力)、摻鉺光纖放大器技術(EDFA,可將光信號直接放大,具有輸出功率高、噪聲小,增益帶寬等優(yōu)點)已取得突破性進展并得到廣泛的應用?,F(xiàn)在DWDM系統(tǒng)和光傳輸設備中,光電技術的比例將從過去比重不到10%達到90%。一種全新的、無需進行任何光電變換的光波通信——“全光通信”,由于波分復用技術和摻鉺光纖放大器技術的進展,也日趨成熟,將在橫跨太平洋和大西洋的通信系統(tǒng)上首次使用,給全球的通信業(yè)帶來蓬勃生機。為此提供支撐的就是半導體光電子器件和部件。光電子器件和技術已形成一個快速增長的、巨大的光電子產(chǎn)業(yè),對國民經(jīng)濟的發(fā)展起著越來越大的作用。美國光電子產(chǎn)業(yè)振興協(xié)會估計,到2003年,光電子產(chǎn)業(yè)的總產(chǎn)值將達2000億美元。
Internet應用的飛速增長對電信骨干網(wǎng)帶寬提出越來越高的需求,為滿足需求的增長,人們可以鋪設更多的光纖,或靠提高單路光的信息運載量(現(xiàn)在主干網(wǎng)可以分別工作在2.5Gbps和10Gbps,并已有40Gbps的演示性設備)。但更主要的方法卻是靠發(fā)展波分復用技術,增加光纖內(nèi)通光的路數(shù)(光波分復用的實驗記錄已經(jīng)達到2.64Tbps)。波分復用技術的普遍運用為光電子器件和部件提供了廣闊的、快速增長的市場。無限戰(zhàn)略公司的報告指出:“信號傳輸用1.31μm和1.55μm激光器市場1999年達到13億美元,比去年增加23%;1.48μm信號放大用激光器1999年市場份額達到1.6億美元,比去年增加33%;980nm信號放大用激光器銷售額達2.9億美元,比去年增長121%。整個激光器市場的份額1999年達18億美元,預期2003年將達到30億美元”。美國通信工業(yè)研究公司(CIR)的研究預測,北美市場光電子部件的市場規(guī)模將由目前的28億美元增長到2003年的61億美元,約每年增長18.5%。密集波分復用設備銷售額也將從1998年的22億美元增加到2004年的94億美元。報告稱雖然10年內(nèi)全光通信還不會全面商業(yè)化,但是全光交換將在幾年內(nèi)成為市場主流,報告也指出盡管光學部件市場被大公司所占據(jù),但仍有創(chuàng)新性公司進入的可能。
2我國的光電子技術和產(chǎn)業(yè)
近10年來我國光電子技術研究在國家“863”計劃和有關部門的支持下有了突飛猛進的進展,在很多領域同國外先進國家只有兩三年的距離,個別領域還處于世界領先地位。
國內(nèi)光電子有關產(chǎn)業(yè)基地在光電子器件、部件和子系統(tǒng)(如激光器、探測器、光收發(fā)模塊、EDFA、無源光器件)等已經(jīng)占領了國內(nèi)較大的市場份額,初步具備同國外大公司競爭的能力,在毫無市場保護的情況下,靠自己的力量爭得了一席之地,市場營銷逐年有較大的增長,個別產(chǎn)品還取得國際市場相關產(chǎn)品中的銷量最大的成績。我國相應研究發(fā)展基地和本領域高技術公司的許多產(chǎn)品填補了國內(nèi)相關產(chǎn)品的空白,打破國外產(chǎn)品在市場上的壟斷地位,同時爭取進入國際市場。
摻鉺光纖放大器(EDFA)是高速大容量光纖通信系統(tǒng)必需的關鍵部件,國內(nèi)企業(yè)產(chǎn)品占國內(nèi)市場40%的份額。我國也是目前國際上少數(shù)幾個有能力研制PIC和OEIC的國家。808nm大功率激光器及其泵浦的固體綠光激光器,670nm紅光激光器已產(chǎn)品化和商品化并批量占領國際市場。國內(nèi)移動通信的光纖直放站所用的光電器件,90%使用國產(chǎn)器件,國產(chǎn)1.55μmDFB激光器戰(zhàn)勝了國外器件,占領了100%的國內(nèi)市場。
但是,我們應當認識到在我國光電子技術發(fā)展中,光電子器件、部件雖是光通信、光顯示、光存儲等高技術產(chǎn)業(yè)的關鍵部分,但在整個系統(tǒng)和設備成本中所占的比重較小,其產(chǎn)值較低,目前科研開發(fā)主要處于跟蹤和小批量生產(chǎn)階段,光電子產(chǎn)業(yè)所需的規(guī)?;?、產(chǎn)業(yè)化生產(chǎn)技術目前還未有實質突破;國內(nèi)研究生產(chǎn)的光電器件和部件有相當部分還未能滿足整機和系統(tǒng)的要求,導致國外器件占據(jù)國內(nèi)市場相當多的份額;在機制上仍未擺脫科研、生產(chǎn)、市場相互脫離的狀況。
我國在光電子技術方面是與國際水平差距相對較小的一個領域,與世界發(fā)達國家?guī)缀跬瑫r起步。但是我們應該清醒地認識到我國制造技術的落后和材料水平有限,而國際上光電子產(chǎn)業(yè)已經(jīng)進入加速發(fā)展階段,留給我們的時間只有三到五年,如果我們不在目前產(chǎn)業(yè)化的技術發(fā)展階段進入,就會失去大好時機。機不可失,時不再來,到產(chǎn)業(yè)化后期時將要花數(shù)倍的力量才能彌補,也許會徹底失去時機,受制于人。
如果一個國家在一代元件上沒有足夠的投資以發(fā)展自主能力,就會給外國競爭者提供進入并占領下幾代技術市場的機會。因而在關鍵器件、部件等方面,要通過引進社會資金和風險投資,知識產(chǎn)權入股、開發(fā)人員持股等方式加快我國光電子成果的產(chǎn)業(yè)化步伐,鼓勵科研人員成果轉化。只要貫徹有“有所為,有所不為”的方針,狠抓創(chuàng)新和高技術成果轉化,打破行業(yè)界限,按市場機制聯(lián)合國內(nèi)相關研究和開發(fā)單位,共同作好光電子產(chǎn)業(yè)化的工作,就一定能發(fā)展我國的光電子事業(yè),有望在研究上取得突破,在產(chǎn)業(yè)上形成規(guī)模經(jīng)濟,取得我國在該領域應有的市場份額。
關鍵詞:光纖通信:技術:發(fā)展趨勢
中圖分類號:TN929.11
文獻標識碼:A
文章編號:1009-8631(2012)05-0074-01
近來有人對光纖通信的發(fā)展情景有些困惑。其一,在2000年IT行業(yè)的泡沫,使光纖的生產(chǎn)規(guī)模投入過大,IT行業(yè)中許多小公司倒閉。特別是光纖,國外對中國傾銷。其二,有人認為:光纖通信的傳輸能力已經(jīng)達到10Tbps,幾乎用不完,而且現(xiàn)在大干線已經(jīng)建設的差不多,埋地的剩余光纖還很多,光纖通信技術不需要更多的發(fā)展。
一、光纖到家庭(FTTH)的發(fā)展
(FTTH)可向用戶提供豐富的寬帶,所以一直被認為是理想的接入方式,對于實現(xiàn)信息社會有重要作用,還需要大規(guī)模推廣和建設。FTTH所需要的光纖可能是現(xiàn)有光纖的2-3倍。過去由于FTTH成本高,缺少寬帶視頻業(yè)務和寬帶內(nèi)容等原因,使FTTH還未能提到日程上來,只有少量的試驗。近來,由于光電子期間的進步,光收發(fā)模塊和光纖的價格大大降低,加上寬帶內(nèi)容有所緩解,都加速了FTTH的實用化進程。
發(fā)達國家發(fā)展FTTH的計劃和技術方案,根據(jù)各國具體情況有所不同。美國主要采用A-PON,因為ATM交換在美國應用廣泛。日本NTT有一個B-FLETts計劃,采用P2P-MC、B-PON、C—EPON、SCM--PON等多種技術。SCM-POM:是采用副載波調制作為多信道復用的PON中國ATM使用遠比STM的SDH少,一般不考慮APON。我們可以考慮的是P2P、GPON和EPON。P2P方案的優(yōu)缺點前面已經(jīng)說過,目前比較經(jīng)濟,使用靈活,傳輸距離遠等,宜采用。而比較GPON和EPON,各有利弊。CPON:采用GFP技術網(wǎng)絡效率高;可以有電話,適合SDH網(wǎng)絡,與IP結合沒有EPON好,但目前GPON技術不很成熟。EPON:與IP結合好,可用戶電話,如用電話需要借助LAD技術。目前,中國的FTTH試點采用EPON比較多。FTTH技術方案的采用,還需要根據(jù)用戶的具體情況不同而不同。
近年來,無限接入技術發(fā)展迅速??捎米鱓LAN的IEEE802.11g協(xié)議,傳輸帶寬可達54Mbps,覆蓋范圍達100米以上,目前已可商用。如果采用無限接入WLAN做用戶的數(shù)據(jù)傳輸,包括:上下行數(shù)據(jù)和點播電視VOD的上行數(shù)據(jù),對于一般用戶其上行不大。IEEES02.11g是可以滿足的。而采用光纖的FFTH主要是解決HDTV寬帶視頻的下行傳輸,當然在需要時也可包括一些下行數(shù)據(jù)。這就形成“光纖到家庭+無線接入”(FTFH+無線接入)的家庭網(wǎng)絡。這種家庭網(wǎng)絡,如果采用PON,就特別簡單,因為此PON無上行信號,就不需要測距的電子模塊,成本大大降低,維護簡單。如果,所屬PON的用戶群體,被無線城域網(wǎng)WIWAX(IEEE802.16)覆蓋而可利用,那么可不必建設專用的WLAN。接入網(wǎng)采用無線是趨勢,但無線接入網(wǎng)仍需要密布于用戶臨近的光纖網(wǎng)來支撐,與FTTH相差無幾。FTYH+無線接入是未來的發(fā)展趨勢。
二、光交換的發(fā)展
光纖只是解決傳輸問題,還需要解決光的交換問題。過去,通信網(wǎng)都是由金屬線構成的,傳輸?shù)氖请娮有盘?,交換是采用電子交換機?,F(xiàn)在,通信網(wǎng)除了用戶末端一小段外,都是光纖,傳輸?shù)氖枪庑盘?。合理的方法應該采用光交換。但目前,由于光開關器件技術不成熟,只能采用的是“光—電—光”方式才解決光網(wǎng)的交換,即把光信號變成電信號,用電子交換后,再變換光信號。顯然是不合理的辦法,是效率不高和不經(jīng)濟的。目前,正在開發(fā)大容量的光開關,以實現(xiàn)光交換網(wǎng)絡,特別是所謂ASON-自動交換光網(wǎng)絡。
通常在光網(wǎng)里傳輸?shù)男畔?,一般速度都是xGbps的,電子開關不能勝任。一般要在低次群中實現(xiàn)電子交換。而光交換可實現(xiàn)高速XGbps的交換。當然,也不是說,一切都要用光交換,特別是低速,顆粒小的信號的交換,應采用成熟的電子交換,沒有必要采用不成熟的大容量的光交換。當前,在數(shù)據(jù)網(wǎng)中,信號以“包”的形式出現(xiàn),采用所謂的“包交換”。
包的顆粒比較小,可采用電子交換。然而,在大量同方向的包匯總后,數(shù)量很大時,就應該采用容量大的光交換。
電子交換一般有“空分”和“時分”方式。在光交換中有“空分”、“時分”和“波長交換”。光纖通信很少采用光時分交換。
光空分交換:一般采用光開關可以把光信號從某一光纖傳到另一光纖??辗值墓忾_關有機械的、半導體的和熱光開關等。近來,采用集成技術,開發(fā)出MEM微電擊光開關,其體積小到mm。已開發(fā)出1296×1296MEM光交換機(Lucent),屬于實驗性質的。
光波長交換:是對各交換對象賦予1個特定的波長。于是,發(fā)送某1特定波長就可對某特定對象通信。實現(xiàn)光波長交換的關鍵是需要開發(fā)實用化的可變波長的光源,光濾波器和集成的低功耗的可靠的光開關陣列等。已開發(fā)出640×640半導體光開關+AWG的空分與波長的相結合的交叉連接實驗系統(tǒng)(corning)。采用光空分和光波分可構成非常靈活的光交換網(wǎng)。日本NTT在Chitose市進行了采用波長路由交換的現(xiàn)場試驗,半徑5公里,共有43個終端節(jié),(試用5個節(jié)點),速率為205Gbps。
自動交換的光網(wǎng),稱為ASON,是進一步發(fā)展的方向。
三、集成光電子器件的發(fā)展
如同電子器件那樣,光電子期間也要走向集成化。雖然不是所有的光電子器件都要集成,但會有相當?shù)囊徊糠质切枰沂强梢约傻?。目前正在發(fā)展的PLC-平面光波導線路,如同一塊印刷電路板,可以把光電子期間組裝于其上,也可以直接集成為一個光電子器件。要實現(xiàn)FTTH也好ASON也好,都需要有新的、體積小的和廉價的和集成的光電子器件。
英文名稱:Optoelectronic Technology
主管單位:信息產(chǎn)業(yè)部
主辦單位:信息產(chǎn)業(yè)部南京電子器件研究所
出版周期:季刊
出版地址:江蘇省南京市
語
種:中文
開
本:16開
國際刊號:1005-488X
國內(nèi)刊號:32-1347/TN
郵發(fā)代號:
發(fā)行范圍:國內(nèi)外統(tǒng)一發(fā)行
創(chuàng)刊時間:1981
期刊收錄:
CA 化學文摘(美)(2009)
中國科學引文數(shù)據(jù)庫(CSCD―2008)
核心期刊:
中文核心期刊(2008)
期刊榮譽:
聯(lián)系方式